
Dynamic Control Of Plans With Temporal Uncertainty

Paul Morris
Nicola Muscettola

NASA Ames Research Center
Moffett Field, CA 94035, U.S.A.

{pmorris,mus}@ptolemy.arc.nasa.gov

Thierry Vidal
LGP/ENIT

47, av d’Azereix - BP 1629
F-65016 Tarbes cedex - FRANCE

thierry@enit.fr

Abstract

Certain planning systems that deal with quantitative
time constraints have used an underlying Simple
Temporal Problem solver to ensure temporal con-
sistency of plans. However, many applications in-
volve processes of uncertain duration whose timing
cannot be controlled by the execution agent. These
cases require more complex notions of temporal
feasibility. In previous work, various “controlla-
bility” properties such as Weak, Strong, and Dy-
namic Controllability have been defined. The most
interesting and useful Controllability property, the
Dynamic one, has ironically proved to be the most
difficult to analyze. In this paper, we resolve the
complexity issue for Dynamic Controllability. Un-
expectedly, the problem turns out to be tractable.
We also show how to efficiently execute networks
whose status has been verified.

1 Introduction
Simple Temporal Networks[Dechter et al., 1991] have
proved useful in planning and scheduling applications that
involve quantitative time constraints (e.g.[Laborie and Ghal-
lab, 1995; Muscettolaet al., 1998b]) because they allow fast
checking of temporal consistency. However this formalism
does not adequately address an important aspect of real exe-
cution domains: the time of occurrence of some events may
not be under the complete control of the execution agent. For
example, when a spacecraft commands an instrument or in-
terrogates a sensor, a varying amount of time may intervene
before the operation is completed. In cases like this, the exe-
cution agent does not have freedom to select the precise time
delay between events in accord with the timing of previously
executed events. Instead, the value is selected by Nature inde-
pendently of the agent’s choices. This can lead to constraint
violations during execution even if the Simple Temporal Net-
work appeared consistent at plan generation time.

The problem of constraint satisfaction for temporal net-
works with uncertainty was first addressed formally in[Vidal
and Ghallab, 1996; Vidal and Fargier, 1999]. In this setting,
the question of temporal feasibility goes beyond mere con-
sistency to encompass issues of “controllability.” Essentially,
a network is controllable if there is a strategy for executing

the timepoints under the agent’s control that satisfies all re-
quirements, in all situations involving the uncontrolled time-
points. The previous work has identified three primary levels
of controllability. In Strong Controllability, there is a static
control strategy that is guaranteed to work in all cases. In
Weak Controllability, for all situations there is a “clairvoy-
ant” strategy that works if all uncertain durations are known
when the network is executed. The most interesting control-
lability property from a practical point of view isDynamic
Controllability, where it is assumed that each uncertain du-
ration becomes known (is observed) after it has finished, and
the property requires a successful strategy that depends only
on the past outcomes.

In previous work, algorithms have been presented for
checking Strong and Weak Controllability, and Strong Con-
trollability has been shown to be tractable, while Weak
Controllability is co-NP-complete[Vidal and Fargier, 1999;
Morris and Muscettola, 1999]. However, Dynamic Control-
lability has proved difficult to analyze, primarily because of
a time asymmetry where a control decision may depend on
the past but not on the future. In this paper we present effi-
cient constraint propagation methods for checking Dynamic
Controllability. These explicitly add constraints that are im-
plicit in the Dynamic Controllability property. With these
additional constraints, Dynamic Controllability checking re-
duces to a form of consistency checking that turns out to be
polynomial. The derived constraints are also used to guide an
effective execution strategy.

2 Background
We review the definitions of Simple Temporal Net-
work [Dechteret al., 1991], and Simple Temporal Network
with Uncertainty[Vidal and Fargier, 1999].

A Simple Temporal Network (STN) is a graph in which the
edges are labelled with upper and lower numerical bounds.
The nodes in the graph represent temporal events ortime-
points, while the edges correspond to constraints on the du-
rations between the events. Formally, an STN may be de-
scribed as a 4-tuple< N,E, l, u > whereN is a set of
nodes,E is a set of edges, andl : E → IR ∪ {−∞} and
u : E → IR ∪ {+∞} are functions mapping the edges into
extended Real Numbers, that are the lower and upper bounds
of the interval of possible durations. Each STN is associated
with a distance graph[Dechteret al., 1991] derived from the



upper and lower bound constraints. An STN is consistent if
and only if the distance graph does not contain a negative
cycle, and this can be determined by a single-source shortest
path propagation such as in the Bellman-Ford algorithm[Cor-
menet al., 1990]. To avoid confusion with edges in the dis-
tance graph, we will refer to edges in the STN aslinks.

A Simple Temporal Network With Uncertainty (STNU)
is similar to an STN except the links are divided into two
classes,contingent linksand requirement links. Contingent
links may be thought of as representing causal processes of
uncertain duration; their finish timepoints, calledcontingent
timepoints, are controlled by Nature, subject to the limits im-
posed by the bounds on the contingent links. All other time-
points, calledexecutable timepoints, are controlled by the
agent, whose goal is to satisfy the bounds on the requirement
links. We assume the durations of contingent links vary inde-
pendently, so a control procedure must consider every com-
bination of such durations.

Thus, an STNU is a 5-tuple< N,E, l, u, C >, where
N,E, l, u are as in a STN, andC is a subset of the edges:
the contingent links, the others being requirement links. We
assume0 < l(e) < u(e) <∞ for each contingent linke.1

An STNU may be regarded as an STN by ignoring the dis-
tinction between contingent links and requirement links. This
allows us to apply STN terminology and concepts, such as
AllPairs shortest-path calculations, to STNUs.

In addition, choosing one of the allowed durations for each
contingent link may be thought of as reducing the STNU to an
ordinary STN. Thus, an STNU determines a family of STNs,
as in the following definition.

SupposeΓ = < N,E, l, u, C > is an STNU. Aprojec-
tion [Vidal and Ghallab, 1996] of Γ is a Simple Temporal
Network derived fromΓ where each requirement link is re-
placed by an identical STN link, and each contingent linke is
replaced by an STN link with equal upper and lower bounds
[b, b] for someb such thatl(e) ≤ b ≤ u(e).

Given a fixed STNU< N,E, l, u, C >, a scheduleT is a
mapping

T : N → IR

whereT (x), writtenTx here, is called thetimeof time-point
x. A schedule isconsistentif it satisfies all the link con-
straints. From a schedule, we can determine the durations
of all contingent links that finish prior to a timepointx. (This
may be viewed as a partial mapping fromC to IR.) We call
this theprehistoryof x with respect toT , denoted byT≺x.

Then anexecution strategyS is a mapping

S : P → T

whereP is the set of projections andT is the set of schedules.
An execution strategyS is viable if S(p) is consistent (w.r.t.
p) for each projectionp.

We are now ready to define the various types of controlla-
bility, essentially following[Vidal, 2000].

An STNU isWeakly Controllableif there is a viable execu-
tion strategy. This is equivalent to saying that every projection
is consistent.

1If l(e) = u(e), there is no uncertainty and we may as well
replacee by a requirement link.

An STNU isStrongly Controllableif there is a viable exe-
cution strategyS such that

[S(p1)]x = [S(p2)]x

for each executable timepointx and projectionsp1 andp2.
Thus, a Strong execution strategy assigns a fixed time to each
executable timepoint irrespective of the outcomes of the con-
tingent links.

An STNU isDynamically Controllableif there is a viable
execution strategyS such that

[S(p1)]≺x = [S(p2)]≺x ⇒ [S(p1)]x = [S(p2)]x

for each executable timepointx and projectionsp1 andp2.
Thus, a Dynamic execution strategy assigns a time to each
executable timepoint that may depend on the outcomes of
contingent links in the past, but not on those in the future
(or present). This corresponds to requiring that only informa-
tion available from observation may be used in determining
the schedule. We will usedynamic strategyin the following
for a (viable) Dynamic execution strategy.

Networks where two contingent links have the same finish-
ing point are clearly not Dynamically Controllable. Because
of this, and for certain technical reasons (following[Morris
and Muscettola, 2000]), we will exclude such networks in the
remainder of this paper.

It is easy to see from the definitions that Strong Control-
lability implies Dynamic Controllability, which in turn im-
plies Weak Controllability. Strong Controllability is known to
be tractable and Weak Controllability is known to be co-NP-
complete. In this paper, we investigate the status of Dynamic
Controllability. Note that a na¨ıve algorithm for checking this
property is hyperexponential since it requires searching for
an execution strategy that is both dynamic and viable, while a
method described in[Vidal, 2000] requires worst case expo-
nential space.

The following terminology will be useful in the subsequent
discussion. A contingent link issqueezedif the other con-
straints (including the other contingent links) imply a strictly
tighter lower bound or upper bound for the link. An STNU is
pseudo-controllableif it is consistent and none of the contin-
gent links are squeezed.

If a network is pseudo-controllable then all the edges aris-
ing from contingent links are shortest paths. Thus, the con-
tingent links survive unchanged in the AllPairs shortest-path
graph (abbreviated as the AllPairs graph). Note that pseudo-
controllability can be determined in polynomial time by com-
puting the AllPairs graph.

It is easy to see that every Weakly Controllable network is
pseudo-controllable since a squeezed contingent link would
imply a projection that is not consistent. However, the con-
verse is not true in general.

Even for a STNU that was originally pseudo-controllable,
it is possible for a contingent link to be squeezed during ex-
ecution (which may be viewed as augmenting the network
with additional constraints). In this paper, we will make use
of results from[Morris and Muscettola, 2000]. These guar-
antee that a contingent link cannot be squeezed during execu-
tion under certain circumstances. Essentially, upper bounds
can only be squeezed by propagations through links with



non-negative upper bounds, and lower bounds can only be
squeezed by propagations through links with positive lower
bounds. Even in these cases, squeezing cannot occur if the
relevant bound isdominatedby that of the contingent link,
which essentially means the bound at issue is redundant. If
the dominance relations are such that no contingent link can
be squeezed, then the network issafe. A safe network can
be executed like an ordinary STN, and thus is Dynamically
Controllable.

3 Triangular Reductions
A starting point for resolving the issue of Dynamic Control-
lability is to considertriangular STNU networks, i.e., net-
works involving three timepoints and including a contingent
link, as shown in figure 1. Here AC is a contingent link with
bounds[x, y], while AB and BC are requirement links with
bounds[p, q] and [u, v] respectively. This notation for con-
tingent and requirement links will be used in subsequent di-
agrams. The contingent link AC is called thefocusof the
triangle. We will also assume that the triangular networks
we consider are pseudo-controllable and have been placed in
AllPairs form, so every edge is a shortest path. It follows that
[u, v] ⊆ [x− q, y − p], which implies[p, q] ⊇ [y − v, x− u].

[u, v]

B

[x, y]

[p, q]

CA

Contingent link
Requirement link

Figure 1: Triangular Network

We will derive a number of results concerning additional
tightenings orreductionsof the bounds that must be obeyed
by any schedule resulting from a dynamic strategy (i.e., any
S(p) for any projectionp, in the notation of the previous sec-
tion). These will vary according to cases involving the signs
of the[u, v] bounds.
1. First suppose thatv < 0. We call this theFollow case,
since the lower bound of CB (i.e., BC reversed) is−v and
hence B follows C. Then the network is Dynamically Con-
trollable since C has already been observed at the time B is
executed. In fact, it may be executed like an ordinary STN
since any propagation will go from C to B and not vice versa.
Thus, the network is safe and no tightening is needed.
2. Next consider the case whereu ≥ 0. We call this the
Precedecase, since B occurs before or simultaneously with
C. Then no information about C is available to B. In this
case, we claim that AB can be tightened to[y − v, x − u].
Suppose there is a projectionp that a dynamic strategy maps
to a schedule T withTB − TA < y − v. Since C is not
in T≺B or T≺A, TB andTA cannot depend on AC. There-
fore TA andTB are unchanged if the projection is mutated
to a projectionp′ where AC equalsy. But then we have
BC = TC−TB = (TC−TA)−(TB−TA) > y−(y−v) = v,
so the BC constraint will be violated. Thus,TB−TA ≥ y−v.
A similar argument showsTB − TA ≤ x − u. After the

tightening of AB to [y − v, x − u] (or equivalently BA to
[u − x, v − y]), the BC bounds are dominated (redundant)
since[u − x, v − y] + [x, y] = [u, v]. Thus, the network is
safe provided it is still pseudo-controllable.
3. The most interesting case occurs whenu < 0 and
v ≥ 0, which we call theUnorderedcase, since B may or
may not follow C. However, suppose B does not follow C
andTB−TA < y− v. As in the previous case, there is then a
projection where the BC constraint is violated. We conclude
that, for a dynamic strategy, B cannot be executed at any time
beforey − v after A if C has not already occurred. This is a
conditional constraint on AB, depending on the time of oc-
currence of C. It may also be viewed as a ternary constraint
on A,B, and C, which we call await since B must wait until
either C occurs or the wait expires aty − v after A.

First, there is one subcase for which the conditional con-
straint turns out to be unconditional, which is wheny−v ≤ x.
Then C cannot occur before the wait expires, so we can sim-
ply raise the lower bound of AB toy − v. We will call this
theunconditional Unorderedreduction.

In the truly conditional subcase wherex < y − v, an ob-
vious idea is to branch on the conditional and consider sepa-
rately two possibilities. First if it turns out that AC< y − v
(in which case C occurs first and B follows), the network is
safe if pseudo-controllable as in theFollow case. Otherwise if
AC ≥ y− v then AB≥ y− v also, which gives BA an upper
bound ofv − y. Thus, the BC upper bound ofv is dominated
(redundant). Since the lower boundu is negative, the network
is safe if pseudo-controllable[Morris and Muscettola, 2000].
Observe that in either case B occurs later thanx after A, so
without branching we can raise the lower bound of AB tox.
We will call this thegeneral Unorderedreduction.

We see above that assuming a dynamic strategy may lead
to a tightening of the constraint bounds. If the tightening pro-
duces a violation of pseudo-controllability, then the original
network was not Dynamically Controllable. On the other
hand, if the network remains pseudo-controllable after the
tightening (in the general Unordered case we must verify
this for both possibilities), then the triangular network is safe
and thus Dynamically Controllable[Morris and Muscettola,
2000]. Thus, the tightenings give a procedure for determining
Dynamic Controllability of triangular networks.

4 Local vs Global Dynamic Controllability
To test a general STNU network for Dynamic Controllability,
we can construct the AllPairs graph, which may be regarded
as a combination of triangular subnetworks. Triangles that
involve a contingent link may be viewed as instances of fig-
ure 1. If a triangle contains two contingent links,2 then we
consider it twice, with each contingent link in turn playing
the role of focus, and the other being treated as a requirement
link. Any tightening propagates to neighbour triangles un-
til quiescence of the network is reached. The only problem
arises with Unordered cases: if we branch on the conditionals
as discussed in the previous section, we end up with a com-
binatorial search, which we prefer to avoid. Instead we use

2Triangles with three contingent links cannot occur, since we
have excluded coincident finishing points.



only the two non-branching Unordered reductions discussed
earlier, so the resulting iterative algorithm is deterministic and
polynomial. (But the network is then not necessarily safe.)

This propagation algorithm with no search may be viewed
as alocalDynamic Controllability checking procedure. Since
it applies to triangles, this is similar to a path-consistency
algorithm in a classical constraint network such as a STN.
Hence, we call this local property3-Dynamic Controllability
and call the resulting algorithm 3DC. As with any local fil-
tering algorithm, the process is sound: if it fails, then at least
one triangle is not Dynamically Controllable and therefore
the whole network is not.

However, it is incomplete as shown by the example in fig-
ure 2. We invite the reader to verify that the triangles are
all quiescent under the deterministic reductions considered
above; therefore the network is stable under 3DC.

BD

C
[2, 4]

[2, 4]

[-3, 1][0, 1]

A

[2, 4]
FE

[0, 1]
[-3, 1]

[0, 1]

Figure 2: Quiescent non-DC Network

Now consider the subnetwork ACDB. It is not difficult to
see that a dynamic strategy requires AD = 1. Similarly, DE
must be 1. But that causes a violation of the AE link. Hence
the network is not Dynamically Controllable.3 This exam-
ple also shows that 3DC does not compute theminimalnet-
work, i.e., the network in which values not belonging to any
dynamic strategy have been removed (for instance here AD
would be tightened to [1,1]). A checking algorithm should
ideally produce this minimality property, which is desirable
for execution purposes. Nevertheless, 3DC is an efficient
technique to rule out a wide variety of networks.

5 Regression of Waits
The incompleteness of 3DC might suggest we should re-
consider a combinatorial search. However, we have not ex-
hausted the possibilities of obtaining deterministic reductions
from the Unordered cases. If the ternary constraint corre-
sponding to the Unordered wait is used directly, then no
branching is necessary. Moreover, this ternary constraint can
be treated somewhat like a binary constraint. Suppose we
have a wait condition that requires B to wait for C until time
t after A. We will indicate that by placing a<C, t> annota-
tion on the AB link. Note that if it is impossible for C to occur
beforet (for example if the lower bound of AC is greater than
t), then the<C, t> wait becomes a true lower bound oft on

3Note that this example is Weakly Controllable, as can be seen
by considering the worst case projection for each cycle.

AB. This corresponds to the unconditional Unordered reduc-
tion discussed earlier.

Now consider figure 2 again. The triangle ABC is an Un-
ordered case, so AB receives a<C, 3> wait. This is not
unconditional since the lower bound of AC is 2. Now con-
sider triangle ADB with this new label on AB. Suppose C has
not occurred yet and D is executed before 1 time unit after A.
In the projection where DB equals 2, B will then occur be-
fore 3 time units after A. If C still has not occurred by then,
the wait on AB will be violated. In other words, the wait on
AB can beregressedthrough DB to obtain a derived wait on
AD, still relative to C: <C, 1> . This, happily, is an un-
conditional wait since C cannot occur before time 2, which
produces a lower bound of 1 on AD and leads to a resolution
of the example. One can notice as well that we achieve the
hoped-for minimal network. That leads us to the following
result.

Lemma 1 (Regression)Suppose a link AB has a wait
<C, t> , wheret is less than or equal to the upper bound of
AC. Then (in a schedule resulting from a dynamic strategy):

(i) If there is any link DB (including AB itself) with upper
boundw, then we can deduce a wait<C, t− w> on AD.

(ii) If t ≥ 0 and if there is a contingent link DB with lower
boundz, whereB 6= C, then we can deduce a wait<C, t−
z> on AD.

Proof: Consider (i) first. Suppose D occurs beforet − w
after A and C has not occurred yet. From the upper boundw
on DB, it follows that B must occur beforew+t−w = t. But
this violates the wait on AB in the projection where C occurs
at its upper bound (which is≥ t). We conclude that D cannot
occur beforet− w after A unless C has already occurred.

Now consider (ii). Ift ≥ 0, then B must be later than A.
Suppose D occurs beforet−z after A and C has not occurred
yet. Then neither A nor D can depend on the outcomes of AC
or DB. Thus, we can consider a mutated projection where DB
finishes atz and AC finishes at its upper bound. This leads to
a violation of the AB wait.2

Note that (i) and (ii) are both applicable to contingent links
but (ii) gives a more restrictive (longer) wait.

A C

D B

<R, 2>

<Q, 2>

[5, 9]

<P, 2>

Figure 3: Regression Example

Iterated regression amounts to a new type of propagation,
where waits are spread to other links. The propagated waits
can be examined for any unordered reductions, which place
additional ordinary constraints throughout the network. For
example, consider figure 3. Intuitively, we can see this is not
Dynamically Controllable because the waits in the worst case
will cause an incursion on the AC lower bound (assuming
the upper bounds of the AP,DQ,BR contingent links are all
at least 2). First we can regress the<R, 2> wait through



procedure DynamicallyControllable? (network W)
1. Compute the All-Pairs graph for W.

If W is not pseudo-controllable then return false.
2. Select any triangle such that v is non-negative.

Introduce any tightenings required by the Precede case
and any waits required by the Unordered case.

3. Do all possible regressions of waits, while converting
unconditional waits to lower bounds. Also introduce
lower bounds as provided by the general reduction.

4. If steps 2 and 3 do not produce any new (or tighter)
constraints, then return true, otherwise go to 1.

Figure 4: DC Checking Algorithm

AC, which gives a wait of<R,−3> on BA. This gives rise
to (unconditional case) a lower bound of−3 on BA, which
is equivalent to an upper bound of+3 on AB. Now we can
regress the<Q, 2> wait on DB through AB, which gives a
<Q,−1> on DA, giving rise to a+1 upper bound on AD.
Finally, we regress the<P, 2> wait on AD through AD
itself, which gives a<P, 1> wait on AA. Now the general
reduction ensures a positive lower bound on AA, which is
a direct inconsistency. Thus, we have reduced the lack of
Dynamic Controllability to a violation of consistency.

6 Dynamic Checking and Execution
We are now ready to introduce the algorithm for determining
Dynamic Controllability, summarized in figure 4. It is just an
enhancement of 3DC with wait regressions and hence is still
a local algorithm, but now we can show it is complete.

We prove completeness by presenting a dynamic execution
algorithm and showing that it is viable if the DC checking al-
gorithm reports success. For simplicity, we will assume the
execution takes place in the AllPairs graph of the tightened
network, although performance could be improved by trans-
forming it to a minimum dispatchable graph as in[Muscettola
et al., 1998a]. The execution is essentially the same as for
an ordinary STN except for adding a requirement to respect
the waits. For this purpose, we only consider waits<C, t>
wheret satisfiesl(C) < t ≤ u(C). Note that waits with
t ≤ l(C) are converted to lower bounds, while waits with
t > u(C) are equivalent to those witht = u(C). (Since
l(C) > 0 by definition, the waits enforced by the algorithm
are all positive.)

The execution algorithm is shown in figure 5. We assume
there is some start timepoint that is constrained to be before
every other timepoint. (If necessary, one can be added.) In
step 2, a timepoint islive if the current time is within the
timepoint’s bounds. It isenabledif all timepoints required to
be executed before it (by links with positive lower bounds)
have already been executed[Muscettolaet al., 1998a].

It is clear that this algorithm provides a strategy where
the decisions depend only on the past. The issue is whether
any constraints are violated. Properties of STNs guarantee
that they can be executed incrementally[Muscettolaet al.,
1998a]. Therefore, only the special features introduced for
STNUs need be considered. The following are the possible
ways in which the execution might fail.

• A deadlock might occur where a wait lasts forever.

• A wait might be forcibly aborted.

procedure Execute (network W)
0. Perform initial propagation from the start timepoint.
1. Immediately execute any executable timepoints

that have reached their upper bounds.
2. Arbitrarily pick an executable timepoint TP that

is live and enabled and not yet executed, and whose
waits, if any, have all been satisfied.

3. Execute TP. Halt if network execution is complete.
Otherwise, propagate the effect of the execution.

4. Advance current time, propagating the effect of any
contingent timepoints that occur, until an
executable timepoint becomes eligible for
execution under 1 or 2.

5. Go to 1.

Figure 5: DC Network Execution

• A propagation might squeeze a contingent link.

An example of a potential deadlock is when AC and DB are
contingent links with a<C, t1> wait on AD and a<B, t2>
wait on DA. More generally, a deadlock requires a cycle of
links, each of which is labelled with a wait or a positive lower
bound. However, the waits<C, t> enforced by the execu-
tion algorithm satisfyl(C) < t ≤ u(C) (see above). These
imply a positive lower bound ofl(C) by the general reduc-
tion. Thus, we would have a cycle where each link has a
positive lower bound. This corresponds to an inconsistency
in the network that would be detected by step 1 of the DC
checking algorithm. The other possibilities are considered in
the following lemmas.

Lemma 2 Suppose a network has successfully passed the
DC checking algorithm. Then the first failure that occurs dur-
ing the DC execution cannot be an aborted wait.

Proof: Suppose the first failure is an aborted wait, and the
earliest time this occurs involves a wait<C, t> on a link
AB. As pointed out above, this wait must be positive, so the
link AB will have a positive lower bound. First we note that
B obviously cannot be the start timepoint.

There are now two cases to consider. In the first case, the
wait is aborted because step 1 required an immediate execu-
tion of B. Consider the timepoint D (possibly the start) whose
execution initiated the propagation that produced the upper
bound of B. Note the regression of<C, t> through DB pro-
duces a wait of<C, t − u(DB)> on AD. If t − u(DB) ≤
l(AC), the checking algorithm places it as an unconditional
lower bound on AD. Otherwise,<C, t− u(DB)> is an ear-
lier wait that is enforced by the execution algorithm. In either
case, D does not occur untilt−u(DB) after A. Supposeb and
d are the upper bounds of B and D, respectively, anda is the
time of execution of A. Then(d − a) ≥ (t− u(DB)). Since
b = d + u(DB), it follows that(b− a) ≥ t. This contradicts
the assumption that the wait was terminated.

The second case involves the possibility that B is a contin-
gent timepoint. (Thus, the execution is not controlled by the
agent). Suppose EB is a contingent link with bounds[x, y].
Again we can regress the wait through EB getting<C, t−x>
on AE. Since E is earlier than B, the latter wait must be satis-
fied. Thus, the duration of AE is greater thant − x. Sincex
is the minimum duration of EB, it follows that AB is greater
thant− x+ x = t, i.e., the wait is satisfied after all.2



Lemma 3 Suppose a network has successfully passed the
DC checking algorithm. Then the first failure that occurs dur-
ing DC execution cannot be a squeezing of a contingent link.

Proof: Suppose the earliest failure is the squeezing of a con-
tingent link AC that has bounds[x, y]. This must occur dur-
ing a propagation that either raises the lower bound of AC
or lowers the upper bound. However, the triangular reduc-
tions ensure that AC dominates adjacent links with finishing
point C, except for the case of links BC with negative lower
boundu and non-negative upper-boundv such thaty−v > x
(the conditional Unordered case). This means the only pos-
sibility for a squeezing is an upper-bound propagation along
some such BC. However, the existence of such a BC would
cause the checking algorithm to place a<C, y− v> wait on
AB. If C occurs before B then there is no propagation from
B to C. Otherwise, the enforcement of the wait by the exe-
cution algorithm ensures that B is not executed beforey − v
after A. Thus, the upper bound propagated along BC will be
TB+v ≥ (TA+y−v)+v = TA+y, so AC is not squeezed.
2

Theorem 1 Dynamic Controllability can be determined in
deterministic polynomial time.

Proof: Lemmas 2 and 3 demonstrate that the execution al-
gorithm successfully executes networks that are verified by
the checking algorithm. Thus, the Dynamic Controllability
checking algorithm is complete. As noted earlier, the algo-
rithm is also sound since the added constraints were derived
from the assumption of Dynamic Controllability.

The individual tightenings are clearly polynomial, and con-
vergence is assured because the domains of the constraints are
strictly reduced by the tightenings. The only issue is how long
the convergence takes. A crude upper bound can be obtained
by assuming a fixed level of precisionδ and finite bounds (say
between±β) on all links. If there areη links, then after at
most2ηβ/δ reductions, some domain would become empty.
This bound grows polynomially with the size of the problem.
2

It is worth pointing out that the execution algorithm pre-
sented here preserves maximum flexibility, since the addi-
tional tightenings and waits were all required by Dynamic
Controllability. (In contrast to the approach, for example,
of addingwaypoints[Morris and Muscettola, 1999], which
surrenders some flexibility.) Another interesting point is that
the execution algorithm allows the selection of any execution
time within prescribed limits, without impairing the success
of the dynamic strategy. Therefore the incremental applica-
tion of the DC propagation ensures that the values remaining
in the domains are consistent with the dynamic strategy. In
other words, the DC checking algorithm produces the mini-
mal network in the sense described earlier.

7 Conclusions
Dynamic Controllability is polynomial! That is certainly the
main contribution of this paper, since this property, needed in
many real-world applications such as planning and schedul-
ing, was expected to be much harder.

Moreover, the proposed method is directly applicable to
the STNU (as opposed to a previous technique that needed a

translation into a finite-state automaton model[Vidal, 2000]),
and is inspired by classical constraint satisfaction techniques.
We have presented a local Dynamic Controllability algorithm
based on triangle reductions, and have shown that non-binary
constraints that were inherent in the problem give rise to bi-
nary constraints through a regression process. We have also
proven this local controllability algorithm is complete with
respect to Dynamic Controllability of the global network.

We believe our contribution will be valuable in the design
of new constraint programming packages that handle tempo-
ral uncertainty and will help pave the way to effective real-
time execution systems that incorporate such uncertainties.

References
[Cormenet al., 1990] T.H. Cormen, C.E. Leiserson, and

R.L. Rivest.Introduction to Algorithms. MIT press, Cam-
bridge, MA, 1990.

[Dechteret al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks.Artificial Intelligence, 49:61–
95, May 1991.

[Laborie and Ghallab, 1995] P. Laborie and M. Ghallab.
Planning with sharable constraints. InProceedings of the
14th International Joint Conference on A.I. (IJCAI-95),
Montreal (Canada), 1995.

[Morris and Muscettola, 1999] P. Morris and N. Muscettola.
Managing temporal uncertainty through waypoint control-
lability. In Proc. of Sixteenth Int. Joint Conf. on Artificial
Intelligence (IJCAI-99), 1999.

[Morris and Muscettola, 2000] P. Morris and N. Muscettola.
Execution of temporal plans with uncertainty. InProc.
of Seventeenth Nat. Conf. on Artificial Intelligence (AAAI-
00), 2000.

[Muscettolaet al., 1998a] N. Muscettola, P. Morris, and
I. Tsamardinos. Reformulating temporal plans for efficient
execution. InProc. of Sixth Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’98), 1998.

[Muscettolaet al., 1998b] N. Muscettola, P.P. Nayak,
B. Pell, and B.C. Williams. Remote agent: to boldly
go where no AI system has gone before.Artificial
Intelligence, 103(1-2):5–48, August 1998.

[Vidal and Fargier, 1999] T. Vidal and H. Fargier. Handling
contingency in temporal constraint networks: from con-
sistency to controllabilities.Journal of Experimental &
Theoretical Artificial Intelligence, 11:23–45, 1999.

[Vidal and Ghallab, 1996] T. Vidal and M. Ghallab. Dealing
with uncertain durations in temporal constraint networks
dedicated to planning. InProc. of 12th European Con-
ference on Artificial Intelligence (ECAI-96), pages 48–52,
1996.

[Vidal, 2000] T. Vidal. Controllability characterization and
checking in contingent temporal constraint networks. In
Proc. of Seventh Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’2000), 2000.


